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Abstract. Mesoscale pressure waves including atmospheric gravity waves, outflow and frontal passages, and wake lows are

outputs of and can potentially modify clouds and precipitation. A wavelet-based method for identifying and tracking these

types of wave signals in time series data from networks of low-cost, high-precision (0.8-Pa noise floor, 1-Hz recording fre-

quency) pressure sensors is demonstrated. Strong wavelet signals are identified using a wave period-dependent (i.e., frequency-

dependent) threshold, then those signals are extracted by inverting the wavelet transform. Wave periods between 1 minute and5

120 minutes were analyzed, a range which would include several types of mesoscale disturbances in the troposphere. After

extracting the signals from a network of pressure sensors, the cross-correlation function is used to estimate the time difference

between the wave passage at each pressure sensor. From those time differences, the wave phase velocity vector is calculated

using a least-squares fit. If the fitting error is sufficiently small (thresholds of RMSE < 90 s and NRMSE < 0.1 were used), then

a wave event is considered robust and trackable.10

1 Introduction

Gravity waves (i.e., buoyancy waves), which result from vertical perturbations of stably stratified fluid, are ubiquitous in the

atmosphere and represent an important distributor of energy through the atmosphere (Nappo, 2013). Within the troposphere, the

vertical motions associated with gravity waves have been shown to influence cloud and precipitation processes. For example,

several studies have investigated the effects of gravity waves on marine stratocumulus. Allen et al. (2013) and Connolly et al.15

(2013) related gravity waves to changes in drizzle production within marine stratocumulus; specifically, enhanced condensation

and collision-coalescence to form drizzle drops appeared to occur in the updrafts associated with gravity waves. Evidence also

suggests a link between gravity waves and the rapid erosion of marine stratocumulus cloud decks (Yuter et al., 2018), perhaps

because evaporation due to entrainment is enhanced as marine stratocumulus clouds are lifted by gravity waves (Connolly

et al., 2013). Fovell et al. (2006) identified gravity waves as a potential trigger mechanism for deep moist convective cells.20

Case studies have linked gravity waves to snow bands, i.e., linear mesoscale enhancements in snowfall rate within winter

storms (Bosart et al., 1998; Zhang et al., 2001; Gaffin et al., 2003), but it is unclear how often snow bands are associated with

gravity waves.
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Several different phenomena can produce surface pressure disturbances on similar spatiotemporal scales to gravity waves,

including outflow boundary passages, volcanic eruptions, convective wake lows, and release of conditional symmetric insta-25

bility. One way of distinguishing gravity waves from other wave phenomena such as Kelvin-Helmholtz waves is that gravity

waves produce a surface pressure signal (Nappo, 2013), given that the stable layer in which they occur is adjacent or nearly

adjacent to the surface. Time series of surface pressure data have been analyzed to identify tropospheric wave events in previ-

ous studies (Kjelaas et al., 1974; Christie et al., 1978; Einaudi et al., 1989; Grivet-Talocia and Einaudi, 1998; Grivet-Talocia

et al., 1999; Koch and Saleeby, 2001). Kjelaas et al. (1974) and Christie et al. (1978) presented case studies of gravity wave30

events selected manually from time series pressure data. Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999)

recorded data at 1/120 Hz (i.e., every 2 min) to identify wave periods longer than 30 min. Einaudi et al. (1989) used a network

of microbarographs recording at 0.1 Hz (i.e., every 10 sec) placed within roughly 100 m of each other, which constrained the

characteristics of disturbances which could be tracked through their network to waves with speeds up to 50 m s−1, and wave

periods of 1-20 min. Koch and Saleeby (2001) used operational Automatic Surface Observing Systems (ASOS) data recorded35

at 1/300 Hz (i.e., every 5 min) which resolved wavelengths ≥ 150 km. While strong pressure disturbances including outflows

and wake lows can be detected by ASOS pressure sensors logging data at 1 min intervals, the large spatial separation between

operational weather stations, which are primarily located at airports, precludes determination of the associated wave speed and

direction for mesoscale disturbances.

This paper presents data from networks of internet appliance low-cost, high precision air pressure sensors (i.e., microbaro-40

graphs) and a methodology for objectively identifying mesoscale wave events and wave speed and direction. Section 2 of this

paper describes the pressure sensors used in this study and the data they provide. Section 3 describes the methodology for

objectively identifying pressure waves from the pressure time traces. Section 4 provides five examples of events captured by

the wave identification method. Finally, a summary and avenues for future work are discussed in Sect. 5.

2 Data45

2.1 Networks of pressure sensors

Pressure sensors were placed in three separate networks: New York City metro area and Long Island, NY, Raleigh, NC, and

Toronto, ON, Canada (Fig. 1). Each pressure sensor was either a Bosch BME280 (Bosch, 2022) or a Bosch BMP388 (Bosch,

2020) Adafruit breakout board connected to a Raspberry Pi Zero W single-board computer used to log the data. BME280

sensors measure pressure, temperature, and humidity. BMP388 sensors measure pressure and temperature. The combined50

sensor and communications package is about the size of a deck of cards. Sensors are connected to the internet and sync their

data to a server at North Carolina State University. Initial testing of the sensors outdoors on patios, in sheltered locations such

as garages, and indoors revealed pressure waves were well resolved in all locations and it was best practice to place the sensors

indoors to minimize wind contamination in pressure measurements. When active, each sensor records pressure at 1-second

intervals with a roughly 0.8 Pa noise floor depending on ambient conditions. The sensors synchronize to network time upon55
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startup. The wave extraction method only depends on relative pressure variations and is not sensitive to absolute or relative

calibration.

To examine the properties of gravity waves which are detectable by these pressure sensors, we consider an internal gravity

wave occurring in an environment with constant background wind u0 The relationship between the pressure perturbation p′

and the horizontal velocity perturbation u′ associated with the wave is described by Nappo (2013):60

p′ = u′ρ0(c−u0) (1)

where ρ0 is the environmental air density and c is the phase speed of the gravity wave. From Eq. 1, the maximum pressure

perturbation p′max can therefore be related to the maximum horizontal velocity perturbation u′max by:

p′max = u′maxρ0(|c−u0|) (2)

Figure 2 shows p′max values according to Eq. 2 at an air density of 1.225 kg m−3 (standard air density at sea level; American65

Meteorological Society, 2022) for u′max and |c−u0| values up to 15 m s−1. In order to detect a wave event, the amplitude

likely needs to be at least an order of magnitude greater than the noise floor, meaning gravity waves with p′max of at least 0.08

hPa should be detectable using the pressure sensors in this study.

2.2 Operational Weather Observations

For context, we compare extracted wave signals with available operational weather observations.70

We use Automated Surface Observing Systems (ASOS; NOAA National Centers for Environmental Information, 2021a)

data including surface temperature, dew point, wind speed and direction, and additional pressure measurements coincident with

wave events. ASOS data are recorded each minute. For wave events detected in New York and Long Island, we examined ASOS

data from John F. Kennedy International Airport (KJFK) and Long Island MacArthur Airport (KISP). For wave events detected

in Toronto, we examined ASOS data from Buffalo Niagara International Airport (KBUF) and Niagara Falls International75

Airport (KIAG).

For one example case shown in Sect. 4.2, we show upper-air radiosonde data from a weather balloon launched in Buffalo,

NY. We obtained data from the Integrated Global Radiosonde Archive (IGRA; NOAA National Centers for Environmental

Information, 2021b) and interpolated to a constant 100-meter resolution. The data include measurements of temperature, dew

point, and winds, from which we calculated wet bulb temperature, frost point, and saturation equivalent potential temperature80

(θ∗e ). Because radiosondes are typically launched every 12 hours at a limited number of locations, representative radiosonde

data are not available for every case.

We use horizontal maps of data from the U.S. National Weather Service (NWS) WSR-88D radars (NOAA National Weather

Service Radar Operations Center, 1991) to show storm features occurring coincident with wave events in Sect. 4.3 and Sect.

4.5. Radar reflectivities are processed following Tomkins et al. (2022) to indicate regions with mixed precipitation in the85
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scan, by inferring that points with reflectivity above 20 dBZ and dual-polarization correlation-coefficient below 0.97 have

mixed precipitation. In maps of radar reflectivity, those regions with mixed precipitation are then shown in greyscale. Doppler

velocity waves are extracted from radial velocity data following Miller et al. (2022), by calculating the difference in radial

velocity from successive scans, converting those differences to a binary (positive/negative) field, and filtering out small objects

in that binary field.90

3 Methods

The methods outlined here for identifying wave events in the pressure time traces are adapted from the techniques used by

Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999). The method uses wavelet transforms to identify wave

events in time-wave period (or, equivalently, time-frequency) space. Wavelet transforms are preferable to Fourier transforms

for the purpose of identifying transient waves which are localized in time (Torrence and Compo, 1998). To illustrate the step-95

by-step procedure, an example corresponding to an gravity wave event on 23 February 2023 in the Toronto pressure network

is described in detail.

3.1 Identifying wave events in a single sensor

The full pressure time series for a gravity wave event on 23 February 2023 captured by sensor 25 in Toronto is shown in Fig.

3a. As an initial pre-processing step, 10-second samples of pressure (i.e., averages of 10 pressure measurements) are used to100

smooth out noise and pressure perturbations due to high frequency turbulent eddies in the data (Fig. 3b). Hereafter, time series

labeled as total pressure are the 10-second sub samples of the original pressure measurements.

A wavelet transform W of a finite energy signal f(t) (a pressure time series in this study) can be defined as (Grivet-Talocia

and Einaudi, 1998, their Eq. 1):

W (b,a) =
1
|a|

∞∫

−∞

f(t)ψ∗(
t− b
a

)dt (3)105

where a is the scale (related to the wave period), and b shifts the wavelet in time (t). ψ∗ represents the mother wavelet. An

analytic Morse wavelet was used (e.g. Olhede and Walden, 2002; Lilly and Olhede, 2012) via the cwt function within Matlab

(Lilly, 2021). In this study, W (b,a) will always refer to the wavelet transform of a pressure time series. The resulting wavelet

transform is an array of complex values in time-scale space. The absolute value of the wavelet transform |W (b,a)| can be

considered the wavelet power at a given time and scale. Figure 3c shows the wavelet power associated with the wave event at110

sensor 25 on 23 February 2023. In this study, wave periods between 1 minute and 120 minutes were analyzed corresponding

to expected periods for mesoscale disturbances.

To objectively identify wave event centers according to wavelet power, a scale-dependent (i.e., wave period-dependent)

threshold function A(a) is defined as the mean wavelet power across all available data for the sensor network by scale, multi-
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plied by a constant K:115

A(a) =K ⟨|W (b,a)|⟩b (4)

A scale-dependent threshold K is necessary because the ‘background’ wavelet power for a pressure time series generally

increases with scale (e.g., Canavero and Einaudi, 1987). Grivet-Talocia and Einaudi (1998) and Grivet-Talocia et al. (1999)

used 2 as an appropriate value for K. Lower values of K lead to more wave events being detected, which can include potential

artifacts in the pressure time trace. For the present study, a K value of 10 was used to ensure that only the strongest wave120

signals were identified (solid contour in Fig. 3d). The mean wavelet power as a function of wave period is shown for each

regional sensor network and for all networks combined in Fig. 4. Event centers were identified as local maxima in wavelet

amplitude which exceed A(a), which are located at (bmax,amax). In Fig. 3, an event center is located within the solid contour.

From the identified event centers, the first iterations of event regions (Ω′) were identified in time-scale space as connected

regions where the wavelet power exceeds K
2 ⟨|W (b,a)|⟩b, i.e., half of the event center threshold. In Fig.3, Ω′ is represented by125

the region within a dashed contour which contains a solid contour.

The watershed transform (Meyer, 1994) was used to refine Ω′. Watersheds (i.e., catchment basins) were identified in the

negative wavelet power array −|W (b,a)|. Any watersheds within Ω′ whose period range was entirely outside the period range

of the watershed containing the event center were removed from the event region Ω′. This step was included to correct cases

where multiple "peaks" in wavelet power were present within Ω′ at different wave periods, with a "valley" in wavelet power in130

between where the wavelet power still exceeded K
2 ⟨|W (b,a)|⟩b, which likely represented distinct wave modes and should be

considered separate wave events.

Ω′ was extended to define the final event region Ω for each event, first by taking the bounding box of Ω′, then by extending

the bounding box along the time axis in both directions until it reaches a local minimum in the wavelet amplitude to ensure that

the entire signal of interest is contained in the event region. This could result in overlapping event regions. Figure 3d shows the135

wavelet power normalized by the mean wavelet power by scale (|W | / ⟨|W |⟩b) for the 23 February 2023 example in sensor

25, with the outline of the event region overlaid with the magenta box.

After defining the event region Ω, the wave event trace could then be extracted (i.e., reconstructed) by inverting the wavelet

transform function over the event region Ω. Figure 3e shows the extracted wave event trace for the 23 February 2023 wave

event in sensor 25. As in Grivet-Talocia and Einaudi (1998), wave events were identified and extracted one at a time, with140

the extracted wave event subtracted from the pressure trace and the wavelet transform recalculated at each iteration, until the

absolute maximum of |W | / ⟨|W |⟩b was less than K (i.e., until no more events are left to be found in the pressure time series).

3.2 Matching corresponding wave events between multiple sensors

Once wave events were identified for each sensor individually, the following steps were taken to identify coherent wave events

across multiple sensors. For this purpose, the terms primary sensor (denoted by i) and secondary sensor (denoted by j) will be145

used to describe a pair of sensors for which events are identified and paired together.
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For each event in the primary sensor pressure trace, events in the secondary sensor pressure trace that occurred within 2 hours

of that primary sensor event (i.e., with a gap between the end of the event in one sensor and the start of the event in the other

sensor not exceeding 2 hours) were considered "candidate" events to match with the primary sensor event. Candidate matching

events in the secondary sensor trace had to have a center period which was within the primary sensor event period range,150

and vice versa. Then, for each candidate matching event in the secondary sensor trace, the event waveforms are reconstructed

by inverting the wavelet transform over the event region for both sensors. Figure 5 shows the extracted waveform for the 23

February 2023 event in sensor 25 and the same wave passage in sensors 04, 23, 24, and 34. The time lag estimate for the wave

passage between sensors is ∆topt, the time lag which maximizes the cross-correlation function Cij(∆t):

Cij(∆t) =
1

||pi|| ||pj ||

∫
pi(t)pj(t+ ∆t)dt (5)155

where pi(t) and pj(t) are the extracted waveforms for the events in the primary and secondary sensor, respectively. The black

lines and subfigure titles in Fig. 5 show the optimal shift in the extracted waveforms for sensors 04, 23, 24, and 34 to maximize

Cij to sensor 25 for the 23 February 2023 example. The match to the primary sensor event is the candidate event with the

highest maximized cross-correlation to the primary sensor event. If the maximized cross-correlation exceeded 0.65, and the

same pair of matched events results from switching the primary and secondary sensors (i.e., the event is matched two-ways), the160

event from sensor i and the event from sensor j are paired together. Switching the primary and secondary sensors is necessary

to avoid instances where multiple events in one sensor are matched with the same event in another sensor. This can occur, for

example, when a set of waves manifests as one event in one sensor and multiple (separate) events in another sensor.

The process of matching events between sensors described above was repeated for each possible combination (within a

sensor network) of primary and secondary sensors in order to obtain the full set of lag times between each pair of sensors165

which captured each event. In other words, N2 pairs of sensors, order-dependent, were analyzed, where N is the number of

sensors in the network with data at a given time. Then, each event in each sensor was assigned an ID based on which other

sensors had a matching event in order to track events across 3 or more sensors. This process required iterating through each

sensor in a network. Each event in the first sensor was assigned a new (i.e., arbitrary) ID. For each subsequent sensor sc, events

with no two-way matches in any prior sensor were also given new IDs. If there were two-way matches with an event in one170

or more prior sensor(s), the event in the sensor sc would share the ID assigned to the matched event in the prior sensor. If

there were multiple prior sensors with matched events, and those events had different IDs, the ID associated with the higher

maximized cross-correlation between the event traces was assigned to the event in sensor sc. If this process results in multiple

events in sensor sc sharing the same event ID D, the event in sensor sc associated with the highest maximized cross-correlation

with any one prior sensor for an event with event ID D is assigned event ID D, and the previously outlined steps are repeated175

for the other event(s) in sensor sc, with event ID D and associated sensors excluded.

The result of this process is a set of events with associated ID numbers for every sensor in the network. For a single sensor,

each event has a unique ID. For each ID number that appeared in at least three sensors, the wave phase velocity vector was

calculated using the set of lag times between each pair of sensors which captured the event.
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3.3 Estimating wave phase velocity vector180

Once sets of matched events were identified, the wave propagation velocities (two-dimensional vectors) could be estimated

for events which occurred in three or more sensors. It is hypothesized for each wave event that a plane wave crosses the

sensor network with slowness vector s = (sx, sy), where sx and sy are the inverses of the x- and y-components of the wave

propagation vector (in s m−1), respectively. s can be solved for from the following equation (Del Pezzo and Giudicepietro,

2002):185

t = s ·∆x (6)

where t is the column vector of the ∆topt values for each possible pair of sensors which captured the event, and ∆x is

the two-column matrix of the x- and y-components of the distance vector between each pair of sensors which captured the

event. t and ∆x each have Ns(Ns− 1)/2 rows, where Ns is the number of sensors which captured the event. Equation 6 can

be considered an overdetermined system of Ns(Ns− 1)/2 linear equations, as long as Ns ≥ 3, and is solved for s by a least190

squares approach represented by:

s = (∆xT ∆x)−1∆xT t (7)

where superscript T indicates the transpose of a matrix (Del Pezzo and Giudicepietro, 2002).

Once sx and sy are solved for, they can be inverted to obtain the wave phase velocity components, cx and cy , respectively.

Additionally, the modeled delay times tm can be calculated by solving Eq. 6 for t. From tm, we estimate the model error195

using root mean square error (RMSE) and normalized root mean square error (NRMSE):

RMSE =

√∑Ns(Ns−1)/2
i=1 (tm,i− ti)2
Ns(Ns− 1)/2

(8)

NRMSE =

√√√√
∑Ns(Ns−1)/2

i=1 (tm,i− ti)2∑Ns(Ns−1)/2
i=1 (ti)2

(9)

Events with sufficiently small RMSE and NRMSE in the modeled delay times can be considered "trackable" events in that200

there is higher confidence in the wave velocity estimates for those events. It was found through testing that a maximum RMSE

of 90 s and maximum NRMSE of 0.1 are reasonable thresholds to consider wave events to be trackable.

Additionally, we require that wave events be captured by at least 4 sensors to be considered trackable. While the slowness

vector and corresponding error metrics can be calculated for events captured by only 3 sensors, the calculation is less con-

strained because there are only 3 delay times δtopt in the calculation (compared to 6 delay times for events captured by 4205

sensors, 10 delay times for events captured by 5 sensors, etc.). The result is that events captured by only 3 sensors can have

small RMSE and NRMSE by chance much more easily than events captured by 4 or more sensors. For each robust and track-

able wave event, the mean amplitude was calculated by averaging the difference between the maximum and minimum values

in the extracted event trace for each sensor which captured the event. The center period for the event was calculated as the

mean of the wave period corresponding to bmax for each sensor which captured the event.210
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4 Pressure disturbance examples

It is especially useful to have examples of wave events where other observational sources constrain the wave phase speed and

direction. We discuss the following examples in this section, some of which have corroborating information on the wave phase

speed and/or direction. The Lamb waves caused by the Hunga Tonga-Hunga Ha’apai volcanic eruption in January 2022 is a

case where where the origin of the waves is known and the phase speed is constrained to the speed of sound (Amores et al.,215

2022). A gravity wave train which passed over Toronto on 25 Feb 2022 occurred coincident with a surface cyclone 100 km

distant but in local conditions of sparse radar echo. A wave event on 4 Feb 2022 is a case associated with an outflow boundary

clearly captured by Doppler radar data from the WSR-88D radar located in Upton, NY. In another example, waves coincided

with a cold front which passed over Toronto on 15 Nov 2020. The cold front’s associated narrow rain band and Doppler velocity

wave (Miller et al., 2022) can be identified in WSR-88D radar data from Buffalo, NY. We also describe a wake low associated220

with a long-lived mesoscale convective system (MCS) which passed over Long Island on 14 Sep 2021.

4.1 15-17 January 2022: Hunga Tonga-Hunga Ha’apai eruption and shock waves

On 14-15 January, 2022, large eruptions occurred at the Hunga Tonga volcano in the south Pacific Ocean which produced ash

plumes reaching the stratosphere and a series of shock waves. A particularly violent, submarine eruption occurred at around

0400 UTC 15 January. Satellite data suggests that the ash plume associated with this eruption may have reached 30 km a.s.l.225

and contained roughly 400 million kg of sulfur dioxide. Damaging tsunami waves due to the eruption were observed as far as

Peru (Global Volcanism Program, 2022). Subsequent analyses of the atmospheric shock waves from the eruption have classified

the shock waves observed far from the source eruption as Lamb waves (e.g., Amores et al., 2022). These Lamb waves have

been the subject of several studies and media reports since the time of the eruption (e.g., Amores et al., 2022; Adam, 2022;

Burt, 2022; Bhatia and Fountain, 2022). The pressure signal associated with the Lamb waves was observed to circle the Earth230

at least twice with estimated phase speeds exceeding 100 m s−1 (Adam, 2022; Burt, 2022).

To identify and characterize the pressure waves from this event, we combined the three regional sensor networks (Fig. 1) to

effectively create an array of 18 sensors which were active at the time of the shock waves. Table 1 summarizes events identified

during this period which meet the robust event criteria outlined in the methods (captured by at least 4 sensors, RMSE ≤ 90 s,

and NRMSE ≤ 0.1), in addition to having a mean optimal cross-correlation between the extracted event traces exceeding 0.75.235

The initial outbound (traveling from Tonga to the antipode location in Algeria) waves manifested as 3 separate detected events

between 1509 and 1714 UTC 15 January, each with high wave frequencies (i.e., low wave periods barely over 1 minute) and

low amplitudes (up to 0.3 hPa). The earliest, and strongest, of these events had a phase speed of 326.6 m s−1 and direction of

64.2◦ (i.e., to the east-northeast). The subsequent rebound (traveling from the antipode location to Tonga) waves were detected

as 2 separate events between 0356 and 0729 UTC 16 January. The rebound waves had a much higher amplitude (roughly240

2.4 hPa) and lower wave frequency (i.e., longer wave periods on the order of roughly 10 minutes) than the outbound waves.

The earliest rebound wave event had a phase speed of 261.9 m s−1 and direction of 261.9◦ (i.e., to the west-southwest). Our

networks captured the initial outbound waves from Tonga to the antipode at Algeria [Outbound (i), (ii), and (iii) in Table 1]
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and the first rebound waves back from Algeria [Rebound (i) and (ii) in Table 1]. Subsequent reverberations of the Lamb shock

waves were not trackable with our sensors and methods by the above criteria due to a combination of the low amplitudes,245

high frequency, and large phase speeds confounding the process of approximating delay times between sensors (an issue also

described by Grivet-Talocia and Einaudi, 1998).

4.2 25 February 2022: Gravity wave train over Toronto

Four pressure sensors in Toronto were used to detect and track a series of pressure oscillations between 0816 and 1359 UTC on

25 February 2022, with a particularly large pressure peak near 1000 UTC (Fig. 7). The mean amplitude of the event across the 4250

sensors was 2.1 hPa, and the wave train was estimated to propagate at 45.4 m s−1 at 73◦ (i.e., to the east-northeast). The center

wave period was 00:20:22. At this time a mature surface cyclone was located roughly 100 km to the south of Toronto. Linear

bands of reflectivity were identified in WSR-88D radar data from Buffalo, NY, in the hours leading up to the detected pressure

waves, but between 0900 UTC and 1200 UTC there was only sparse radar echo over the Toronto area. Between 1230 and 1430

UTC there was radar echo across the Toronto area, and a set of Doppler velocity waves was identified from the WSR-88D data255

using the methods in Miller et al. (2022). Those Doppler velocity waves appeared to propagate toward the northeast, in roughly

the same direction as the detected pressure waves (Video Supplement Animation-Figure-S01).

The nearest available sounding during the duration of the wave event appeared to indicate adequate environmental conditions

for gravity wave ducting (Lindzen and Tung, 1976; Koch and O’Handley, 1997). The sounding from Buffalo, NY, valid at 1200

UTC on 25 Feb 2022, shows a temperature inversion roughly 2 km deep (Fig. 8), which serves as the "ducting layer" directly260

above a shallow boundary layer. A moist neutral or conditionally unstable layer (indicated by near-zero or negative values of

the vertical gradient in equivalent saturation potential temperature) was above this inversion extending to around 4500 m MSL

and serves as the "trapping layer" in Fig. 8. The sharp change in stability between the inversion layer and conditionally unstable

layer at roughly 2800 m MSL could serve as a reflector of gravity wave energy. The apparent presence of a gravity wave duct

during the detected pressure wave event raises confidence that the pressure waves were gravity waves.265

4.3 4 February 2022: Outflow pressure jump and subsequent oscillations over Long Island

Between 1730 and 1900 UTC on 4 February 2022, an event with amplitude of roughly 1.8 hPa was detected by the pressure

sensor network in the New York City metro area and Long Island. This event was a positive jump in pressure followed, to

varying degrees in each sensor, by weak oscillations in the pressure trace (Fig. 9). Prior to the jump in pressure, there had

been a decreasing trend in the pressure traces for several hours. At the same time, WSR-88D weather radar data from Upton,270

NY, showed widespread precipitation echo over Long Island. A wave feature was apparent in the Doppler radial velocity data,

which could also be identified following the methods of Miller et al. (2022) (Fig. 10 and Video Supplement Animation-Figure-

S02). This wave event had a phase speed of 21.1 m s−1 and direction of 118.2◦ clockwise from north (i.e., southeastward).

The values are consistent with the radar-detected Doppler velocity wave feature (Video Supplement Animation-Figure-S02).

Operational one-minute Automated Surface Observing System (ASOS) data (Fig. 11a) also recorded a jump in the surface275

pressure of nearly 2 hPa. Near the time of this jump, there was also a peak in the wind speed and gusts, along with a brief
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shift in the wind direction from north-northeasterly to north-northwesterly (Fig. 11b). These features, along with the modest

decrease in the temperature (Fig. 11a), are consistent with a convective outflow boundary (i.e., gust front). A "fine line" can be

seen in WSR-88D reflectivity data at roughly the same location as the wave, which further suggests that a convective outflow

was responsible for the pressure rise (Fig. 10 and Video Supplement Animation-Figure-S02).280

4.4 15 November 2020: Cold front passage over Toronto

A robust and trackable wave event was detected by 5 pressure sensors in Toronto coincident with a cold front passage at

roughly 2000 UTC on 15 November 2020. The pressure steadily dropped in the hours leading up to the frontal passage before

abruptly rising 1-2 hPa as the cold air mass arrived. The pressure then dropped roughly 1 hPa about 30 min later. Some

sensors recorded oscillations in the pressure trace embedded within the gradual pressure rise in the proceeding hours (Fig. 12).285

One-minute ASOS data from Buffalo, NY, also captured the pressure jump at roughly the same time as the temperature and

dew point drop indicating the cold front passage (Fig. 13).

The pressure wave event for the cold front passage had an estimated phase speed of 27.5 m s−1 at 65◦ (i.e., to the east-

northeast), a mean amplitude of 1.8 hPa, and a center wave period of 00:02:08. WSR-88D radar data from Buffalo, NY, show a

narrow band of high reflectivity and a Doppler velocity wave (identified following the methods in Miller et al., 2022) associated290

with the cold front advancing over Toronto at roughly 2000 UTC at a speed and direction consistent with the pressure wave

(Video Supplement Animation-Figure-S03).

4.5 14 September 2021: Wake low associated with a mesocale convective system

Between 0300 and 0400 UTC on 14 September 2021, a pressure drop of roughly 5 hPa and subsequent recovery occurred at 4

of the pressure sensors in New York City metro area and Long Island network (Fig. 14). This was detected as a wave event with295

an estimated propagation speed of 20.6 m s−1 and propagation direction of 67.5◦ (i.e., to the east-northeast). ASOS data from

Islip, NY (KISP; Fig. 15), and other stations in the area (not shown) also recorded the pressure minimum. This wave event

occurred near the time of a mesoscale convective system (MCS) passage over Long Island as indicated by reflectivity data from

the WSR-88D radar in Upton, NY (Fig. 16 and Video Supplement Animation-Figure-S04). In addition to the precipitation echo

associated with the MCS translating from northwest to southeast, there was also a stationary region of weak echo with low300

dual-polarization correlation coefficient (shown in greyscale following Tomkins et al., 2022) in the vicinity of the radar. The

stationary weak echo was likely non-meteorological and due to either birds or insects. The precipitation echo appears to be

entirely past KISP by 0342 UTC (Fig. 16c and Video Supplement Animation-Figure-S04), which is roughly the same time as

the minimum pressure at KISP (Fig. 15a).

This pressure minimum appears to be consistent with a wake low, associated with subsidence heating in the rear inflow jet305

(Markowski and Richardson, 2010; Johnson and Hamilton, 1988). The subsidence heating does not necessarily lead to warming

at the surface, which was not observed in the ASOS data (Fig. 15a), but decreased air density aloft due to warming will still

lead to a surface pressure decrease. Markowski and Richardson (2010) also note that a property of wake lows associated with

a translating squall line is that the center of convergence due to the wake low does not perfectly align with the center of the
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wake low. Rather, the convergence center slightly lags behind the wake low center. In the 14 September 2021 example, the310

ASOS time series data have a wind speed minimum co-occurring with a shift in the wind direction from near 100◦ (east-

southeasterly) to near 280◦ (west-northwesterly) which can be interpreted as the convergence maximum (Fig. 15b). This

convergence maximum occurs slightly after the pressure minimum associated with the wake low (Fig. 15a), consistent with the

Markowski and Richardson (2010) description.

5 Summary315

In this study, a wavelet-based method was used to identify wave events in time series pressure data from networks of 0.8 Pa-

precision sensors recording the pressure every second. In addition to identifying wave events in each sensor individually, the

delay times in wave passage among sensors in a given network were used to determine the direction of wave propagation and

phase velocity. Overall, the method was most successful at tracking pressure wave events with relatively large amplitudes (on

the order of 0.3 hPa or more) and longer periods (i.e., lower frequencies; on the order of 5 minutes or more). Low-amplitude,320

high-frequency waves likely propagated across the sensor networks many times, but these waves were difficult to reconstruct,

due to their wavelet signal being weaker, and to track, due to aliasing of the waveform conflating the time lag estimates

between sensors. Gravity waves aloft will not always produce a detectable pressure signal at the surface, for example if the

planetary boundary layer is neutral or unstable (e.g., Kjelaas et al., 1974). Another possible limitation is that in their current

network deployments the pressure sensors are too far apart to track highly localized disturbances, particularly for the New York325

City/Long Island sensor network. Future work will examine data from networks of pressure sensors a few km to a few m apart

and the degree to which signals associated with waves in shallow marine clouds are detectable with these sensors.

Deployment of networks of low-cost, high-precision sensors opens myriad opportunities for monitoring the direction and

speed of gravity waves that have not been previously available with conventional pressure sensors on operational weather

stations due to their longer measurement interval and larger station spacing. A forthcoming publication will describe a 3+330

year climatology of wave events detected by the pressure sensors deployed in New York and Toronto and address hypotheses

regarding the relationship between gravity waves and local enhancements in snowfall rate within winter storms (i.e., snow

bands). There are observational case studies demonstrating this connection (e.g., Bosart et al., 1998; Gaffin et al., 2003), but a

multi-year data set with continuously-monitoring pressure sensors in context of radar data will enable a more comprehensive

examination of the co-occurrence, or lack thereof, of gravity waves with snow bands across many winter storms.335

Code and data availability. Data: The pressure time series data used throughout this publication can be found at https://doi.org/10.5281/

zenodo.8136536 (Miller and Allen, 2023). The NWS NEXRAD Level-II data used in Figs. 10 and 16 can be accessed from the Na-

tional Centers for Environmental Information (NCEI) at https://www.ncei.noaa.gov/products/radar/next-generation-weather-radar (NOAA

National Weather Service Radar Operations Center, 1991). The NWS ASOS surface station data used to create Figs. 11 and 15 can be

accessed from NCEI at https://www.ncei.noaa.gov/products/land-based-station/automated-surface-weather-observing-systems (NOAA Na-340

tional Centers for Environmental Information, 2021a). The radiosonde data used to create Fig. 8 can be accessed from NCEI at https:
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//www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive (NOAA National Centers for Environmental Informa-

tion, 2021b).

Code: The code used for processing the pressure time series data can be found at https://doi.org/10.5281/zenodo.8087843 (Allen and

Miller, 2023).345

Video supplement. List of animations with captions and filenames

All animations can be viewed at: https://doi.org/10.5446/s_1476. Individual animations can be viewed by following the DOI

URL.

Animation-Figure-S01: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D

radar data from Buffalo, NY, at 0.5◦ tilt, from 0706 UTC to 1457 UTC on 25 Feb 2022. In (a), reflectivity values are shown350

in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of

pressure sensors which captured the wave event described in Sect. 4.2, and unfilled blue circles indicate locations of pressure

sensors which did not capture the wave event. Title: 25 Feb 2022 KBUF Reflectivity and Doppler Velocity Waves. DOI:

https://doi.org/10.5446/62539

Animation-Figure-S02: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D355

radar data from Upton, NY, at 0.5◦ tilt, from 1541 UTC to 2129 UTC on 4 Feb 2022. In (a), reflectivity values are shown

in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of

pressure sensors which captured the wave event described in Sect. 4.3, and unfilled blue circles indicate locations of pressure

sensors which did not capture the wave event. Goes with Fig. 10. Title: 04 Feb 2022 KOKX Reflectivity and Doppler Velocity

Waves. DOI: https://doi.org/10.5446/62540360

Animation-Figure-S03: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D

radar data from Buffalo, NY, at 0.5◦ tilt, from 1805 UTC to 2324 UTC on 15 Nov 2020. In (a), reflectivity values are shown

in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of

pressure sensors which captured the wave event described in Sect. 4.4, and unfilled blue circles indicate locations of pressure

sensors which did not capture the wave event. Title: 15 Nov 2020 KBUF Reflectivity and Doppler Velocity Waves. DOI:365

https://doi.org/10.5446/62541

Animation-Figure-S04: Animated maps of (a) reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D

radar data from Upton, NY, at 0.5◦ tilt, from 0003 UTC to 0727 UTC on 14 Sep 2021. In (a), reflectivity values are shown

in greyscale when there is likely enhancement due to melting (Tomkins et al., 2022). Filled blue circles indicate locations of

pressure sensors which captured the wave event described in Sect. 4.5, and unfilled blue circles indicate locations of pressure370

sensors which did not capture the wave event. Goes with Fig. 16. Title: 14 Sep 2021 KOKX Reflectivity and Doppler Velocity

Waves. DOI: https://doi.org/10.5446/62542
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Figure 1. Locations of pressure sensor networks. (a) US northeast regional map with the locations of the Toronto, New York City and Long

Island, and Raleigh networks indicated. Detailed maps of sensor locations in (b) Toronto, (c) New York and Long Island, and (d) Raleigh.
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Figure 2. The maximum pressure perturbation p′max (hPa) contoured and colored as a function of the maximum velocity perturbation u′max

(m s−1) and absolute value of the difference between the wave phase speed and background wind speed |c−u0| (m s−1) at a density ρ0 of

1.225 kg m−3, according to Eq. 2. In (a), u′max and |c−u0| up to 15 m s−1 are shown. In (b), u′max and |c−u0| up to 3 m s−1 are shown.

The color scales differ in (a) and (b).
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Figure 3. Steps in process of identifying an event corresponding to a gravity wave train passage on 23 Feb 2023 in sensor 25. (a) Original

1-second pressure time series. (b) 10-second moving average of the pressure time series, with every 10th point kept. (c) Wavelet power

corresponding to the pressure time series in (b). (d) Wavelet power normalized by the mean for each wave period corresponding to the

pressure trace, with contours for values of 5 (dashed) and 10 (solid). The event region corresponding to the wave described in the text is

outlined in magenta in (d). (e) Time series of the extracted wave event. Wave periods in (c) and (d) are shown on a logarithmic scale. All

times are UTC.
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Figure 4. Mean wavelet power as a function of wave period across the entire data set (purple curve), and for the individual sensor networks

around Toronto, ON, Canada (blue), New York City and Long Island, NY (red), and Raleigh, NC (yellow).
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Figure 5. Extracted waveforms corresponding to the gravity wave train on 23 Feb, 2023 for sensors 25 (a), 04 (b), 23 (c), 24 (d), and 34 (e).

In (b), (c), (d), and (e), brown lines show the extracted wave event with no time shift, and black lines show the extracted wave event shifted

in time according to the peak cross-correlation with the extracted wave event time series for the event in sensor 25 (time shift and correlation

coefficients are shown in subplot titles). All times are UTC.
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Figure 6. Pressure traces and extracted waveforms for two events associated with the shockwave caused by the Hunga Tonga-Hunga Ta’apai

eruption on 15 Jan 2022. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines). (a) the Outbound (ii)

wave event propagating from Tonga toward the antipode location in Algeria in Sensor 02 (Table 1, column 3). (b) the Rebound (ii) wave

event propagating from the antipode location to Tonga in Sensor 18 (Table 1, column 6). All times are UTC.
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Figure 7. Pressure traces and extracted waveforms for the 25 Feb 2022 wave event in sensors (a) 04, (b) 24, (c) 26, and (d) 34. Extracted

waveforms (black lines) are overlaid on the total pressure time series (blue lines). All times are UTC. Cross-correlations and lag times are

indicated relative to sensor 04. Cross-correlations are computed for each variation of pairs of sensors (not shown).
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Figure 8. Upper air sounding data from Buffalo, NY, valid for 1200 UTC 25 Feb 2022. (a) Dry bulb temperature (blue), dew point (orange),

wet bulb temperature (green), and frost point (red) profiles (all in ◦C). (b) Equivalent saturation potential temperature (θ∗e ) profile (black

line, K) overlaid on the vertical gradient in θ∗e (K km−1). Positive values (blue) of the vertical gradient in θ∗e indicate absolute stability,

while negative values (red) indicate conditional or absolute instability. (c) Horizontal wind profile (barbs, kts; colored according to wind

speed). Annotation indicates the vertical extents of a ducting layer and a trapping layer according to the gravity wave duct criteria described

by Lindzen and Tung (1976) and Koch and O’Handley (1997).
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Figure 9. As in Fig. 7, but for the 04 Feb 2022 wave event in sensors (a) 21, (b) 22, (c) 11, (d) 14, and (e) 20, with cross-correlations and lag

times indicated relative to sensors 21. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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Figure 10. (a) Reflectivity and (b) Doppler velocity wave detection for NWS WSR-88D radar data from Upton, NY, at 0.5◦ tilt, at 1920 UTC

on 4 Feb 2022. In (a), reflectivity values are shown in greyscale where there is likely enhancement due to melting (Tomkins et al., 2022).

Filled blue circles indicate locations of pressure sensors which captured the wave event described in Sect. 4.3, and unfilled blue circles

indicate locations of pressure sensors which did not capture the wave event. Filled green circle indicates location of Islip, NY, ASOS station

(KISP). An animation of this figure showing the time sequence from 1541 to 2130 UTC is in Video Supplement Animation-Figure-S02.
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Figure 11. Time series of one-minute ASOS data from Islip, NY (KISP), on 4 February 2022. (a) Temperature (purple) dew point (red),

and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow). Wind

direction is not plotted when it changes by more than 180◦ in consecutive observations (e.g., when crossing 0◦ or 360◦) or when the wind

speed is below 1.5 m s−1. All times are UTC.
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Figure 12. As in Fig. 7, but for the 15 Nov 2020 wave event in sensors (a) 34, (b) 04, (c) 24, (d) 25, and (e) 25, with cross-correlations and

lag times indicated relative to sensor 34. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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Figure 13. Time series of one-minute ASOS data from Buffalo, NY (KBUF), on 15 November 2020. (a) Temperature (purple) dew point

(red), and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow).

Wind direction is not plotted when it changes by more than 180◦ in consecutive observations (e.g., when crossing 0◦ or 360◦) or when the

wind speed is below 1.5 m s−1. All times are UTC.
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Figure 14. As in Fig. 7, but for the 14 Sep 2021 wave event in sensors (a) 21, (b) 27, (c) 14, and (d) 18, with cross-correlations and lag times

indicated relative to sensor 21. Extracted waveforms (black lines) are overlaid on the total pressure time series (blue lines).
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Figure 15. Time series of one-minute ASOS data from Islip, NY (KISP), on 14 September 2021. (a) Temperature (purple) dew point (red),

and pressure (blue). (b) Wind speed (orange), wind gust speed (red), and wind direction in degrees clockwise from northerly (yellow). Wind

direction is not plotted when it changes by more than 180◦ in consecutive observations (e.g., when crossing 0◦ or 360◦) or when the wind

speed is below 1.5 m s−1. All times are UTC.
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Figure 16. Maps of radar reflectivity at 0.5◦ tilt from the NWS WSR-88D radar in Upton, NY, on 14 September 2021. Reflectivity values in

color show meteorological echo and those are shown in greyscale are likely non-meteorological echo such as insects and birds in this case

(Tomkins et al., 2022). Filled blue circles indicate the locations of pressure sensors which captured the wave event described in Sect. 4.5, and

unfilled blue circles indicate the locations of pressure sensors which did not capture the wave event. Filled green circle indicates the location

of the Islip, NY, ASOS station (KISP). The sequence of images from (a) 0303 UTC, (b) 0323 UTC, (c) 0342 UTC, and (d) 0402 UTC shows

the southeastward movement of region of convective cells > 40 dBZ from closer to further off the southern coast of Long Island. The wake

low is inferred to be near the trailing edge of the weaker stratiform precipitation region behind (west of) the convective cells. The minimum

pressure at KISP associated with the wake low occurred near the time of the scan shown in (c). An animated version of this figure, with

Doppler velocity wave detection, is shown in Video Supplement Animation-Figure-S03.
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Outbound Rebound

(i) (ii) (iii) (i) (ii)

Event Start 1509 1/15 1532 1/15 1606 1/15 0356 1/16 0652 1/16

UTC

Event End 1631 1/15 1619 1/15 1714 1/15 0823 1/16 0729 1/16

UTC

Wave Period 01:19 01:19 01:05 11:25 06:37

mm:ss

Mean Amplitude 0.30 0.13 0.07 2.43 0.36

hPa

Nsensors 4 7 7 14 7

Mean Cross-Correlation 0.83 0.84 0.77 0.89 0.97

Phase Speed 326.6 237.5 178.9 292.1 290.4

m s−1

Phase Direction 64.2 93.1 56.8 261.9 262.0

Degrees CW from N

RMSE 1.04 25.19 74.19 17.90 8.21

s

NRMSE 0.015 0.023 0.035 0.014 0.043
Table 1. Summary of 5 wave events associated with the Hunga Tonga-Hunga Ta’apai eruption shockwaves in January 2022. Wave events

were subset to those with mean cross-correlation above 0.75, modeled delay time RMSE below 90 s, and modeled delay time NRMSE below

0.1. The start times shown are the earliest among sensors which captured a given event, and end times shown are the latest among sensors

which captured a given event. Center wave periods and amplitudes are averaged across the sensors which captured a given event. The first

3 events shown [Outbound (i), (ii), and (iii)] are events associated with the initial outbound set of shockwaves, and the last 2 events shown

[Rebound (i) and (ii)] are events associated with the initial rebound set of shockwaves.
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